SEM, TEM, and AFM Analyses of Phase-Separated Polymer Blend Membranes for Gas Separations

نویسندگان

  • I. H. Musselman
  • N. P. Panapitiya
  • M. P. Tomasek
  • C. K. Miller
  • J. P. Ferraris
چکیده

Polymer blends are proving to be important in emerging technologies including as gas separation membranes [1]. The blending of existing polymers offers the distinct advantage of being able to develop new materials with potentially synergistic properties not attainable with the individual polymer components and without the need to synthesize new macromolecules [2]. We recently developed phaseseparated polymer blends for gas separation comprised of polybenzimidazole (PBI) and 6FDA-DAMDABA (6FDD) (Figure 1). In this system, PBI facilitates the separation of gas pairs and 6FDD enhances gas flux. Of critical importance is the blend interface, which determines the membrane’s gas transport, mechanical, and adhesion properties [3]. Herein, we report the results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses of a PBI:6FDD (50:50) blend microstructure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PES/Quaternized-PES Blend Anion Exchange Membranes: Investigation of Polymer Compatibility and Properties of the Blend

Polyethersulfone (PES)-based anion exchange blend membranes were prepared from quaternized-PES (Q-PES) and N-Methyl-2-pyrrolidone (NMP) casting solutions with water as coagulant via non-solvent induced phase inversion. The compatibility of the blend system was investigated through thermodynamic studies while membrane formation was determined using the cloud point techni...

متن کامل

Study on the fouling behavior of HDPE/PE-g-MA/EVA blend membrane fabricated via thermally induced phase separation method

In this study, neat HDPE and HDPE/PE-g-MA/EVA blend membranes were fabricated via thermally induced phase separation (TIPS) method and their fouling behaviors were examined using filtration of BSA protein. Membranes were characterized using FESEM, AFM, ATR-FTIR analyses and porosity measurement. Fouling behavior of membranes was analyzed using the resistance-in-series (RIS), classic and combine...

متن کامل

Supporting Polyvinylchloride Polymeric Blend Membrane with Coated Woven Fabric

Blend reverse osmosis membranes were fabricated using polyvinyl chloride (PVC) with cellulose acetate (CA) as polymer blends. Tetrahydrofuran (THF) and N-Methyl-2-pyrrolidone (NMP) were used as solvents. The membrane polymer solution was cast on a coated woven fabric support material. The prepared membranes have been characterized by SEM and mechanical properties. SEM r...

متن کامل

Preparation of blend hydrophilic PSF-SPEEK ultrafiltration membranes for oily wastewater treatment

Membrane separation is known as an efficient technique for the oily wastewater treatment. Therefore, in the present study, sulfonated poly (ether ether ketone) (SPEEK) was introduced into the polysulfone (PSF) solution in order to enhance the hydrophilicity and the membrane structure for the oil–water separation. The hollow fiber membranes were fabricated via a phase-inversion process. The memb...

متن کامل

Polyester/SiO2 Nanocomposites: Gas Permeation, Mechanical, Thermal and Morphological Study of Membranes

Using of nanocomposite membranes composed of polymer and inorganic nanoparticles is a novel method to enhance gas separation performance. In this study, membranes were fabricated from polyester (PE) containing silica (SiO2) nanoparticles and gas permeation properties of the resulting membranes were investigated. Morphology of the membranes, SiO2 distribution a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014